Symmetric groups (D+F 1.3)

In the last section, we showed how you can think of D_{2n} as a set of some of the bijections from $\Sigma^{1,2}, ..., \Sigma^{n}$ to itself. Of course, we need to preserve the geometric structure, so we don't include all bijections.

Let Ω be a set. Let S_{Ω} be the set of bijections from Ω to itself. Recall, S_{Ω} is a group w/operation composition. It's called the symmetric group on Ω .

When
$$\Omega = \{1, ..., n\}$$
, we denote S_{Ω} by just S_{n} .

Note: we can think of S_n as the permutations of $\mathcal{E}', ..., n_{\mathcal{F}_n}^3$, so $|S_n| = h!$

Cycle decomposition

Instead of describing elements of Sn by listing where it sends 1,..., n, we have more efficient notation.

A cycle is a string of integers, written (a, az ... am), which represents the element of Sn that sends ai to ai+1 (for i=1,...,m-1), am to a1, and fixes the rest of 1,..., h.

Ex:
$$(132) \in S_4$$
 represents the permutation
 $1 \mapsto 3$
 $3 \mapsto 2$
 $2 \mapsto 1$
 $4 \mapsto 4$

We can write an arbitrary element of S_n as a product of k cycles $(a_1 \dots a_m,)(a_{m_i+1} \dots a_{m_2})\dots(a_{m_{k-1}+1} \dots a_{m_k}),$ $(a_{m_{k-1}+1} \dots a_{m_k})$ $(a_{m_{k-1}+1} \dots a_{m_k}),$ $(a_{m_{k-1}+1} \dots a_{m_k}),$ $(a_{m_{k-1}+1} \dots a_{m_$

In order to keep notation consistent, we need an algorithm to write each elt of Sn as the product of disjoint cycles.

To demonstrate how this works, define $\sigma \in S_8$ by: $\sigma(1) = 5$ $\sigma(5) = 4$ $\sigma(2) = 2$ $\sigma(6) = 3$ $\sigma(3) = 6$ $\sigma(7) = 8$ $\sigma(4) = 1$ $\sigma(8) = 7$

Cycle decomposition algorithm for elements of Sn

- 1.) Pick the smallest, a, of E1,2,...,n} which has not already appeared in a previous cycle. Begin the new cycle w/ a. If all E1,...,n} have appeared, go to step 4. Ex: (1
- 2.) If $\sigma(a) = a$, close the cycle and go to step 1. Otherwise the cycle continues $w/b = \sigma(a)$

3.) If $\sigma(b) = a$, close the cycle to complete it and go to step 1. Otherwise, continue the cycle w/ c= $\sigma(b)$. Repeat this step w/c as the new value for b until the cycle closes.

$$E_{X}: (1 5 4)(2)(36)(78)$$

4.) Remove all cycles of length 1. Ex: (154)(36)(78)

Multiplying elements of Sn

Since we treat elements of S_n as functions, we multiply from right to left, so if $\sigma = (253)(14)$, t = (124)Then $\sigma t = (1532)$ and $t\sigma = (2534)$. <u>Claim</u>: Disjoint cycles in Sn commute.

Pf: If σ and τ are disjoint, and $i \in \{1, ..., h\}$, then WLOG $\sigma(i) = i$. Thus, $\sigma(\tau(i)) = \tau(i) = \tau(\sigma(i))$. D (Assjoint ness)

<u>Note</u>: There are many ways to describe an element of Sn. e.g. (12)(23) = (123), but we will prove later that there is a <u>unique</u> way to express each element as a product of disjoint cycles (up to reordering cycles, and cyclically permuting cycle elements), given by the output of the above algorithm.

Optional coding exercise:

1.) Write a function that takes as input a permutation of 1, ..., n (e.g. interpret 4231 as the bijection $3 + \frac{1}{3} = 3$) and outputs the cycle decomposition.

2.) Write a function that multiplies cycles.